- Shaw, N., Heatherington, K. and Baddiley, J. (1968) Biochem. J. 107, 49.
- Carter, H. E., McCluer, R. H. and Slifer, E. D. (1956) J. Am. Chem. Soc. 78, 3735.
- 22. Hakomori, S. (1964) *J. Biochem.* **55**, 205. 23. Aspinall, G. O. (1963) *J. Chem. Soc.* 1676.

Phytochemistry, 1975, Vol. 14, pp. 1447-1448. Pergamon Press. Printed in England.

A NEW PENTACYCLIC TRITERPENE LACTONE FROM DILLENIA INDICA*

NILIMA BANERJI, PRONABESH MAJUMDER and NARENDRA L. DUTTA

Indian Institute of Experimental Medicine, Calcutta-32, India

(Received 8 August 1974)

Key Word Index—Dillenia indica; Dilleniaceae; myricetin; sitosterol; betulinic acid; betulinaldehyde; betulin; lupeol; a new hydroxylactone— 3β -hydroxy-lupane- 13β , 28-lactone.

Plant. Dillenia indica Linn is an evergreen tree native to India. Uses. Its bark and leaves are astringent [1]. Previous work. On trunk bark [2], on leaves [3].

Present work. Air-dried powdered stem-bark was successively extracted with light petrol, CHCl₃ and MeOH. Light petrol extract was dried and separated into neutral and acidic fractions by the usual method. The neutral fraction on repeated chromatography on SiO₂ column afforded betulinaldehyde, m.p. $199-200^{\circ} [\alpha]_D^{26} + 28^{\circ}$, betulin, m.p. $254-255^{\circ}$ [α]_D²⁷ + 22° , Lupeol, m.p. $211-212^{\circ}$ $[\alpha]_{D}^{29} + 27^{\circ}$, sitosterol, m.p. $137^{\circ} [\alpha]_{D}^{28} - 36^{\circ}$ and the acidic fraction yielded only betulinic acid, m.p. $305-306^{\circ}$ [α]_D²⁷ + 6·35°. These compounds were identified by comparison with authentic samples (m.m.p., co-TLC, superimposable IR). The isolation of betulinic acid, betulinaldehyde, betulin and lupeol showed a remarkable biogenetic sequence rarely encountered in a plant source. The CHCl₃ extract yielded only betulinic acid and betulin.

The dried MeOH extract was re-extracted with CHCl₃ to remove nonglycosides and the mixture of glycosides, which could not be separated on SiO₂, was hydrolysed with 6% methanolic HCl. The only sugar identified was D-glucose (PC). The aglycone fraction was separated into acidic and neutral parts. The acidic part yielded only betulinic acid, and the neutral part, on column chromatography on SiO₂, afforded sitosterol, betulin,

hydroxylactone B of betulinic acid [4] along with the flavonol myricetin, m.p. 358–360°, acetate, m.p. 214–216° and identified by comparison with an authentic sample (m.m.p., Co-TLC, superimposable IR, UV). Hydroxylactone B was most probably an artefact formed by influence of acid on betulinic acid.

Besides this series of known compounds C_6H_6 : CHCl₃ (4:1) eluate from the chromatogram yielded a triterpene (+ ve Liebermann–Burchard test – ve, C(NO₃)₄) m.p. 325° (d), $[\alpha]_D^{27} + 63.4^\circ$. $C_{30}H_{48}O_3$ (Found: C, 78.45; H, 10.42%; Calc. for $C_{30}H_{48}O_3$, C, 78.89; H, 10.59%) MW 456 by MS. Acetate m.p. 319–320° $[\alpha]_D^{27} + 82.1^\circ$. IR, 1754 cm⁻¹ (5-membered lactone) and 3350 cm⁻¹ (hydroxyl), suggestive of a hydroxylactone. This lactone was different from hydroxylactone A and B by comparison with authentic samples [4].

On oxidation with Jone's reagent it gave a keto compound, m.p. $328-330^{\circ}$ [α] $_{D}^{27}+70^{\circ}$; IR, 1689 and 1754 cm $^{-1}$. The ketone gave a positive Zimmerman's test and was reduced back to the original compound with NaBH₄ which proved the β conformation of OH group at C-3. Studies of its MS pattern [5] (prominent peak for M - 43 unit for *iso*propyl) NMR spectra [6] and also on biogenetic ground, indicated the compound to be in the lupane series. It was not identical with dihydrothurberogenin [7] or the dihydrolactone produced by mercuric acetate oxidation of acetyl betulinic acid [8].

The compound was reduced by LiAlH₄ to give a triol m.p. $280-281^{\circ}$ [α]_D²⁷ + 34°, (Found: C,

^{*} Presented at Annual Convention of Chemists (India) December 23-30, 1973.

[†] Unless otherwise stated, all $[\alpha]_D$ values are in CHCl₃.

78.31; H, 11.35%, Calc. for $C_{30}H_{52}O_3$, C, 78.20; H, 11.38%). IR spectra showed no CO. Acetylation (at room temperature and at 130°) gave a diacetate (without any trace of triacetate) m.p. 230-231° $[\alpha]_{0}^{27} + 32^{\circ}$ (found: C, 74.89; H, 10.42; acetyl, 15.59, calc. for $C_{34}H_{56}O_5$, C, 74.95; H, 10.36; acetyl, 15.72%). Stability of this diacetate towards CrO₃ proved that the OH-group must be tertiary one i.e. at C - 13. The triol diacetate was dehydrated with BF₃ in dry benzene [9], purified on a AgNO₃ impregnated silica gel column, to give a major fraction which on crystallization (CHCl₃-MeOH) yielded a pure compound m.p. 295–296° $[\alpha]_{0}^{27} + 70.2^{\circ}$. Although the compound gave yellow colour with C(NO₃)₄, its IR spectra showed no absorption for a trisubstituted double bond. UV210 ($\epsilon = 5650$) 215 (4520) and 220 nm (3650), were indicative of a tetrasubstituted double bond [10]. On oxidation with CrO₃ in HOAc [11] a conjugated ketone was obtained, m.p. 290° $[\alpha]_D^{27} + 65^{\circ}$. IR 1690 cm⁻¹, and UV, at 242 nm $(\epsilon = 13520)$ without any absorption for vinylic proton in NMR. Thus the position of double bond introduced by dehydration of triol-diacetate is most likely to be at C 13(18). In view of the evidence outlined above the structure of the new hydroxylactone is suggested to be 3β -hydroxy-lupane-13 β -28-lactone (1).

Acknowledgement—The authors thank Dr U. R. Ghatak, Indian Association for the Cultivation of Science, Calcutta-32 for NMR spectra.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956). Glossary of Indian Medicinal plants. Council of Scientific and Industrial Research, (India), p. 97.
- Bhattacharjee, S. R. and Chatterjee, A. (1962) J. Ind. Chem. Soc. 39, 276.
- Lebreton Philippe and Bouchez Marie-Paule (1967) Phytochemistry 6, 1601.
- Robertson, A., Soliman, G. and Owen, E. C. (1939) J. Chem. Soc. 1267.
- Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688.
- Cheung, H. T. and Williamson, D. G. (1969) Tetrahedron 25, 119.
- Marx, M., Leclercq, J., Turch, B. and Djerassi, C. (1967) J. Org. Chem. 32, 3150.
- Adhikary, S. P., Lawrie, W. and McLean, J. (1970) J. Chem. Soc. (C), 1030.
- Djerassi, C., Farkas, E., Liu, L. H. and Thomas, G. H. (1955) J. Am. Chem. Soc. 77, 5330.
- 10. Halsall, T. G. (1951) Chem. Ind. London, 867.
- Djerassi, C. and Mills, J. S. (1958) J. Am. Chem. Soc. 80, 1236

Phytochemistry, 1975, Vol. 14, pp. 1448-1450, Pergamon Press, Printed in England.

ASEBOTIN AND ITS AGLUCONE FROM THREE SPECIES OF RHODODENDRON

TOM J. MABRY AND MASAYUKI SAKAKIBARA

Cell Research Institute and Department of Botany, University of Texas at Austin, Austin, TX 78712, U.S.A.

and

BRUCE KING

Department of Botany, University of Georgia, Athens, GA 30601, U.S.A.

(Received 10 July 1974)

Key Word Index—*Rhododendron canescens, R. nudiflorum, R. roseum* and *R. calendulaceum*; Ericaceae; dihydrochalcones; asebotin; 2',6',4-trihydroxy-4-methoxydihydrochalcone.

In the course of a biochemical systematic investigation of *Rhododendron* (Ericaceae), we isolated two dihydrochalcones, one of which was not previously reported from Nature. In a recent review,

Bohm [1] noted that there are only 13 naturally occurring dihydrochalcones including phloridzin (2',4',6',4-tetrahydroxydihydrochalcone 2'-O-glucoside) and asebotin (the 4'-O-methyl ether of